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The parametric oscillation of a single trapped electron is studied and used to measure enhanced spontaneous
emission. Hysteresis in this motion provides a 1-bit memory to store information about excitations made with
the electron ‘‘in the dark.’’ The time dependence and stability criteria for the parametric excitation are exam-
ined. The cyclotron motions for one and two electrons are also studied.@S1050-2947~99!01303-7#

PACS number~s!: 32.80.Pj

I. INTRODUCTION

An electron in a Penning trap is typically observed by
driving its axial motion along the magnetic field direction
with a driving force that is nearly resonant@1#. Instead, we
modulate the trapping potential and thereby parametrically
drive the electron’s axial motion at approximately twice its
resonant frequency. The magnitude and phase of the re-
sponse are separately measured and compared to theoretical
expectations@2#, along with resonance line shapes, bistabil-
ity, hysteresis, and the time required to excite to a steady
state. These studies@3# are done in extremely high vacuum,
in an apparatus virtually identical to that used to establish a
pressure less than 5310217 Torr @4#, thereby avoiding the
collisions which dominated an earlier observation@5#. Para-
metric resonance is used to measure rapid, enhanced sponta-
neous emission for electron cyclotron motion in a trap cav-
ity, at a rate too fast to have been measured previously@6#.
The bistability and hysteresis in parametric resonance are
used to measure the cyclotron resonance frequency with a
resolution of 1 part in 109, a resolution which corresponds to
the relativistic shift in the cyclotron frequency caused by
increasing the cyclotron quantum number by 1. This resolu-
tion is attained while the electron is ‘‘in the dark’’ insofar as
all nearly resonant drives~other than the cyclotron drive! and
detectors are turned off, to avoid significantly increasing the
electron’s amplitude. Bistability and hysteresis in the para-
metric oscillator are used as a 1-bit memory to record
whether or not a cyclotron excitation occurs. ‘‘In the dark’’
detection should make it possible to increase the accuracy of
tests of quantum electrodynamics which are already the most
accurate comparison of a physics experiment@7# and theory
@8#.

II. PARAMETRIC RESONANCE AND STEADY STATE

One electron is stored at the center of the Penning trap
represented in Fig. 1. Two end-cap electrodes, above and

below, and a ring electrode are shaped along the hyperbolic
contours which are the equipotentials of the desired electro-
static quadrupole potential. An ‘‘orthogonalized’’ geometry
@9# makes it possible to improve the shape of the trapping
potential~by adjusting the potential on the asymptotic com-
pensation electrodes! without changing the electron’s oscil-
lation frequencies. A 5.3 T magnetic field is directed along
the vertical axis. An electron in this Penning trap undergoes
the familiar motions@1# illustrated in Fig. 1. Throughout this
paper we shall assume that the slow magnetron motion@at
frequency vm /(2p)513.6 kHz] is cooled to essentially
zero radius and is hence not an issue. The rapid cyclotron
motion, also perpendicular to the magnetic field direction, is
at frequencyvc8/(2p)5148 GHz. The axial motion, paral-
lel to the magnetic field direction, is at frequencyvz /(2p)
563.4 MHz.

We focus on the axial motion of a single trapped electron
for the rest of this section and the following section. The
common way to monitor this motion is to drive one end cap
near resonance atvd'vz and detect the response voltage
induced across the resistorR in a tuned circuit connected to
the other end cap, as shown in Fig. 2.~We do not discuss a
frequency modulation which is important for practical rea-
sons but does not change the basic idea@1#.! The measured
points in Fig. 3~a! fit the expected Lorentzian line shape with
a width of 12.2 Hz. The width is due to damping of the
particle’s energy in the detection resistorR. The magnified
residuals below in Fig. 3~b! clearly show that on resonance
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FIG. 1. Orthogonalized, hyperbolic Penning trap~a! and motion
of one electron in a Penning trap~not to scale! ~b!.
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the electron ‘‘shorts out’’ the 4.2 K Johnson noise from the
resistor. Figure 4 illustrates that it is also possible to detect a
single electron without the external drive. The Johnson noise
from the resistor is detected~the noise spectrum is not flat
because of the passband of a crystal filter! and the dip dem-
onstrates again the ‘‘shorting’’ of this noise by the trapped
electron. The width of 8.9 Hz differs slightly from that of the
driven resonance in Fig. 2 which was taken at a different
time, illustrating the small~but slow! variations in the effec-
tive resistance of the tuned circuit. Such a dip is a common
way to observe many trapped particles, but a very well-tuned
trap and optimized electronics are needed to see a single
trapped particle in this way. Figure 4 requires several min-
utes of averaging. The advantage is that an electron which is
driven only by noise stays closer to the center of the trap
where the electrostatic and magnetic field are most carefully
controlled.

This paper demonstrates parametric resonance as a third
way to detect the axial motion of a single trapped electron.
~Detailed studies of the parametric resonance of many
trapped electrons have been carried out@10,11#.! Before the
electron’s axial motion is excited it experiences only a drive
so far off the 12.2 Hz wide resonance, atvd /(2p)
' 2vz /(2p)'127 MHz, that its oscillation amplitude
does not increase because of the drive. In this sense, the

electron remains ‘‘in the dark,’’ because the drive does not
make the electron oscillate farther from the center of the trap.
However, when the electron does come into parametric reso-
nance, a large and easily observed axial oscillation atvd/2
'vz is produced. In Sec. IV for example, we shift the elec-
tron’s axial motion into parametric resonance with the drive
using a cyclotron excitation, and measure how quickly a re-
sponse occurs. The electron thus remains ‘‘in the dark’’ until
there is a large parametric response.

The setup in Fig. 2 can produce a modulation of the trap-
ping potential atvd'2vz instead of the direct drive men-
tioned previously. Such a parametric drive at frequencyvd
52(vz1e) excites an electron oscillation at frequency
vd/25vz1e. The one-electron, parametric oscillator has the
equation of motion

Z̈1gzŻ1vz
2@11h cosvdt#Z1l4vz

2Z31l6vz
2Z550,

~1!

where Z is a dimensionless axial coordinate scaled by the
trap sized @1#. The damping, at rategz

21513 ms, is due to
energy dissipated in the detection resistor. Adjusting the
compensation potential changes the coefficientsl4 andl6 of
the nonlinear terms. In terms of the Legendre expansion co-
efficients often used to describe Penning traps@1#, l4
52C4 /(11C2) andl653C6 /(11C2).

If we start with no axial excitation (Z'0), the nonlinear
terms are not important, and the equation of motion is simply
the familiar Mathieu equation with damping. Figure 5 repre-
sents the well-known properties of the Mathieu equation. For
a parametric drive at 2(vz1e), no excitation occurs untilh
is increased beyond a threshold. Forh above this threshold

FIG. 3. ~a! Response of an electron driven near its axial fre-
quency~points! and a fit ~solid curve! to the expected Lorentzian
line shape.~b! Residuals show clearly the effect of ‘‘noise short-
ing’’ on resonance.

FIG. 4. Undriven~except by Johnson noise! electron shorts the
Johnson noise from the 4.2 K resistor at frequencies near its axial
resonance.

FIG. 5. Excitation rangee12e2 vs parametric drive strengthh
for the Mathieu equation with damping.

FIG. 2. Schematic of drive and detection of electron’s axial
motion.
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the drive overcomes the axial damping and the excitation
grows exponentially. For a parametric drive resonant atvd
52vz ~i.e., e50), this threshold occurs at drive strengthh
5hT with

hT52gz /vz53.831027. ~2!

~The number to the right is twice the ratio of the measured
damping rategz and the measured frequencyvz .) Figure
6~b! illustrates this resonant threshold.

For a fixed drive strengthh.hT , Fig. 6~a! shows that
parametric excitations occur for drives not exactly on reso-
nance~i.e., eÞ0) ~see also Fig. 7!. Excitations begin in a
rangee2,e,e1 with sharply defined boundaries

e656
1

4
vzAh22hT

2. ~3!

This well-defined excitation band is also a property of the
Mathieu equation. Figure 5 represents fixed drive strength
h.hT as a horizontal dotted line. The system is in the insta-
bility region from detunings betweene2 and e1 . Figure 8
shows the measured excitation range~points! as a function of
the drive strength, fit to Eq.~3! ~line!. From this fit we obtain
hT54.3 (61.1)31027, in good agreement with Eq.~2!.

As the excitation grows, the Mathieu equation ceases to
be a valid description. The nonlinear terms@in Eq. ~1!# re-
strict further growth until a steady state is reached. We can
solve the full equation of motion given in Eq.~1! in order to
obtain expressions for steady state motion. To first order in
the drive strengthh, the axial response is at half the drive
frequency; so we let

Z~ t !5A~ t !cos@~vz1e!t1C~ t !#. ~4!

The amplitudeA(t) and the phaseC(t) are taken to be
slowly varying functions of time so that deviations from
steady state can be discussed in the next section. Then, using
e!vz andgz!vz , the solution is a pair of coupled differ-
ential equations inA andC,

d

dt
A52

gz

2
AF12

h

hT
sin~2C!G , ~5!

d

dt
C52e1

1

4
hvz cos~2C!1

3

8
l4vzA

21
5

16
l6vzA

4.

~6!

The steady state amplitudes and phases can be obtained
by setting the time derivatives equal to zero. Figure 6~d!
compares the measured steady state phases~points! and the
calculated steady state phases~curve! obtained from Eq.~5!:

sin~2Css!5hT /h, ~7!

whereCss is the phase difference between the response and
the drive for a steady state excitation. Because the driving
period is half the response period, the two solutions differ in
phase by 180°. This can be seen already in Eq.~1! which is
invariant under a transformationZ→2Z.

Figure 6~c! shows the steady state phase response as the
parametric drive is swept in frequency with an amplitude
response shown in Fig. 6~a!. The phase is not well defined
until the axial motion is excited to a nonzero amplitude near

FIG. 6. Measured amplitude~a! and phase~c! of the parametric
response atvd/25vz1e as the frequency of the parametric drive at
vd is swept through resonance. The phase takes one of two bistable
values near resonance and is not well defined off resonance where
the response amplitude is very small, as is also illustrated in the
measured phase-space plot shown in Fig. 7. The amplitude thresh-
old ~b! and phase~d! of the parametric response atvd/2'vz

~points! are measured as a function of the strengthh of the drive.
The phase plot~d! is shown superimposed on the theoretical pre-
diction of Eq.~7!.

FIG. 7. Phase-space plot showing two families of attractors
180° apart as the drive frequency is being swept as in Fig. 6. Open
and dark circles correspond to two different phase branches. The
points clustered near the center occur primarily for an off-resonant
drive.

FIG. 8. Measured excitation rangee12e2 vs parametric drive
amplitude. This giveshT54.3(61.1)31027.
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resonance. Near resonance, either of the two phases sepa-
rated by 180° is equally likely. One example of each phase is
superimposed in the figure, and the amplitude and phase of
all measured points are also displayed in a polar, phase space
plot in Fig. 7. Note that Figs. 6~a! and 6~b! correspond re-
spectively to horizontal and vertical slices through Fig. 5.

The measured line shapes exhibit bistability and hyster-
esis as illustrated in Fig. 9 where the line shape extends
further when the drive is swept upward in frequency than
when it is swept downward. The response in the double-
valued bistable region thus depends on the excitation history.
In the following sections we will illustrate how to use the
bistability and hysteresis to record information about an ex-
citation made ‘‘in the dark.’’ The trap was tuned in this case
to makel4 as small as possible and the observed shape is
determined by the value ofl6 . If the trap is deliberately
mistuned to makel4 much larger, the excited line shape then
becomes a straight line. If the trap is instead tuned so that
both l4 andl6 are important, then a more complicated line
shape results, one example of which is shown in Fig. 10.

All these features can be explained from the steady state
solutions to the equations of motion, Eqs.~5! and ~6!. For
parametric drives swept upward and downward through reso-
nance, the solutions of these equations indicate that the
squares of the measured amplitudesA6

2 either vanish or lie
on parallel parabolas,

5l6vz

16
A6

4 1
3l4vz

8
A6

2 1e62e50, ~8!

as can be seen by substituting Eqs.~3! and ~7! into Eq. ~6!

with Ċ50. The6 in A6
2 ande6 corresponds to the sign of

cos(2Css), where

cos~2Css!56A12 sin2~2Css!. ~9!

The stability of these two branches will be discussed in the
next section.

Fitting the observed parametric line shapes to parallel pa-
rabolas makes it possible to determine the anharmonicity co-
efficientsC4 andC6 ~or equivalentlyl4 andl6), as well as
to calibrate the dimensionless amplitudeA ~scaled byd).
The amplitudeA is related to the detected signal voltageS
and trap dimensiond by a constantb with S5bAd. To find
this constant, a family of curves taken for different compen-
sation potentials was fit to Eq.~8!. Since the anharmonicity
coefficientsC4 and C6 vary linearly with the ratio of the
compensation potentialVc and trapping potentialV0,

Ck5Ck
~0!1DkS Vc

V0
D , ~10!

the quadratic~a! and linear~b! coefficients from the fits de-
pend onVc . The ratio of the variation ofa and b with re-
spect to the compensation potential is related tob,

b5
1

d
AS Db/DVc

Da/DVc
D5

4

D6

D4
50.48 V/mm. ~11!

This depends on the well-known calculated ratioD4 /D6 .
Onceb is found, the dimensionless amplitudeA can be ex-
pressed in terms of the detected signalA5S/bd, and the
coefficientsC4 ,C6 ,D4 ,D6 can be obtained directly from the
parabola fits. This is shown in Fig. 11. The slopes of the lines
are proportional to theDk , as can be seen from Eq.~10!. The
coefficients displayed in Fig. 9 and Fig. 10 differ slightly
from those in Ref.@3# because these coefficients are derived
from the new method outlined above.

We note that for a given drive strength, a larger amplitude
of excitation can be obtained in a trap with a smallerC6 . For

FIG. 9. Amplitude squared of the parametric response atvd/2
5vz1e as the frequency of the parametric drive atvd is swept
through resonance, when the trap is tuned to makeC4 as small as
possible. The data are fit to parallel parabolas given by Eq.~8!.
~Calibration of the mm scale depends on a calculated parameter
D6 /D4520.19 defined in Ref.@1#.!

FIG. 10. Amplitude squared of the parametric response at
vd/25vz1e as the frequency of the parametric drive atvd is
swept through resonance, when the trap is mistuned to increaseC4 .
The data are fit to parallel parabolas given by Eq. 8.~Calibration of
the mm scale depends on a calculated parameterD6 /D4520.19
defined in Ref.@1#.!

FIG. 11. Anharmonicity coefficientsC4 andC6 as a function of
compensation potentialVc . The slopes of the lines give theDk

coefficients. The dotted line is a fit to points~squares! measured for
drive strength ofh/hT52.2; the solid line is a fit to points~circles!
measured for drive strength ofh/hT53.2. The calculated parameter
D6 /D4520.19 defined in Ref.@1# is assumed.
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the largerC6 in our cylindrical trap, however, we believe it
is still possible to reproduce similar parametric excitations.
From Eq.~8! we can explicitly write the ratio of the tuned
(C450) amplitudes for differentC6 on resonance (e50) as

S A8

A D 4

5
C6

C68
Ah822hT

2

h22hT
2

. ~12!

In the cylindrical geometry trap used for plasma studies@10#,
C6520.1. In the orthogonalized hyperbolic trap discussed
here,C65431025. To achieve the same amplitude in the
cylindrical trap as in this hyperbolic trap, the drive strengthh
would have to be about 2000 times stronger. We have, how-
ever, observed a degraded value forC6 in the hyperbolic trap
(C65431022) which is similar to the value in the cylindri-
cal trap. Compared to the original hyperbolic trap amplitude,
the expected amplitude for the cylindrical trap is about1

7 and
that for the degraded hyperbolic trap is about1

6 ~for the same
drive strengthsh). We have been able to observe a one-
electron parametric resonance in the degraded trap~with re-
duced signal-to-noise ratio!. Therefore, it should be possible
to see a one-electron parametric signal in the cylindrical cav-
ity trap, with roughly the same reduced signal-to-noise ratio.

III. TIME DEPENDENCE AND STABILITY

So far we have considered only the steady state line
shapes. Now we examine the time it takes to reach the steady
state. This is most easily done by rewriting the amplitude and
phase equations~5! and ~6! in terms of the in-phase and
quadrature response variablesAI[A cos(C) and AQ
[A sin(C),

d

dt
AI5Fe1

1

4
hvz2

3

8
l4vzA

22
5

16
l6vzA

4GAQ2Fgz

2 GAI

~13!

d

dt
AQ52Fe2

1

4
hvz2

3

8
l4vzA

22
5

16
l6vzA

4GAI

2Fgz

2 GAQ , ~14!

where we have left the quantityAI
21AQ

2 expressed asA2.
There are two regimes in which we can obtain a closed-form
solution for the time dependent response. Near zero excita-
tion, the nonlinear terms can be ignored as before, leaving
the familiar Mathieu equation with exponential solutions.
Near steady state excitation, the amplitude variables can be
expanded about their equilibrium values to obtain linear dif-
ferential equations for the deviations from steady state.

As the axial excitation begins from zero amplitude, the
amplitude initially increases exponentially with the time con-
stantt given ~within the excitation range! by

t215Ae6
2 2e21~gz/2!22gz/2, ~15!

which is obtained by assuming the time dependenceet/t for
AI and AQ , and solving Eqs.~13! and ~14! with l45l6
50. Figure 12 illustrates how the response amplitude grows
as a function of time, witht50 being the time at which the

parametric drive is turned on. The response grows much
more quickly for a resonant drive,e50 in ~a!, than for a
nonresonant drive,e/(2p)520 Hz, in ~b!. Note from Eqs.
~15! and~3! that the rise time within the excitation range can
be decreased as desired by increasing the drive strengthh,
sincee6

2 increases with increasingh. The rise time can be
increased by driving near the ends of the excitation range.
Because of the exponential character of the amplitude
growth, the time taken to excite to a steady state also de-
pends in a very sensitive way upon the initial thermal exci-
tation amplitude, suggesting excitation time measurements as
a promising new way to measure axial temperature.

As the amplitude grows further, nonlinearity becomes in-
creasingly important and eventually arrests the initial
growth. The amplitude then approaches its steady state
value, once again exponentially, with one of two character-
istic time constantst1 andt2 given by

t1
215gz/21A~gz/2!264~]A6

2 /]e!21ue6uA6
2 , ~16!

t2
215gz/22A~gz/2!264~]A6

2 /]e!21ue6uA6
2 , ~17!

where ]A6
2 /]e are the slopes of the steady state response

parabolas in Eq.~8!. These time constants are obtained by
letting AI5(AI)61DAI andAQ5(AQ)61DAQ whereDAI
and DAQ are small deviations from the steady state ampli-
tudes (AI)6 and (AQ)6 with time dependencee2t/t1,2, and
solving Eqs.~13! and~14! for t1,2. Any small deviation from
equilibrium can be written as a linear combination of two
exponentials using the two solutionst1 andt2 . The plus or
minus sign in the term under the radical corresponds to the
plus or minus sign inA6

2 and will be crucial in determining
which branch is stable.

Interpretingt1 andt2 as steady state approach times re-
quires that they be positive, real quantities. If the radical
term is imaginary, the electron amplitude oscillates but still

FIG. 12. Amplitude of the parametric response atvz1e as a
function of the time after the parametric drive at 2(vz1e) was
turned on att50, for the faster resonant case ofe50 in ~a! and for
a slower, nonresonant case ofe/(2p)520 Hz in ~b!.
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approaches equilibrium exponentially, with the single time
constant (gz/2)21. A negativet2 , however, leads to expo-
nential growth of the tiniest fluctuations, rendering that
branch of steady state responses unstable. Figure 13 shows
an example of a typical approach to equilibrium. A 10 ms
detection filter limits our ability to see the fast initial rise, but
the slower approach to steady state fits well to an exponential
with a time constant of 32 ms. The drive strengths, detun-
ings, and anharmonicities are adjusted~as they usually are!
so that the approach to equilibrium is oscillatory~averaged
away in the data! with an overall time constant of simply
(gz/2)21. The 32 ms approach time then results in a value of
10 Hz for gz/2p, consistent with damping rates obtained
from directly measured axial linewidths as in Figs. 3 and 4.

When Re(t2) is positive, the steady state parametric ex-
citation is stable. This criterion is summarized in Fig. 14
which illustrates how the slopes of the parabolas forA6

2

determine the stability of each branch. For the ‘‘plus’’ pa-
rabola to be stable, it must have a negative slope with respect
to the detuninge, and vice versa for the ‘‘minus’’ parabola.
The slopes depend crucially on the anharmonicity coeffi-
cients. The pointsx6524e6A6

2 /(gz/2)2 delineate the over-
damped and underdamped regions. Figures 9 and 10 show

measured line shapes superimposed on calculated parabolas.
The solid calculated curves are stable solutions whereas the
dotted curves are unstable. Not surprisingly, the experimen-
tal responses lie wholely on the stable branches. As a final
check of the stability criteria, the phase of the response is
measured and shown in Fig. 6~d!. These points were taken
with both anharmonicity coefficientsl4 andl6 positive; thus
both slopes were positive, forcing the ‘‘minus’’ branch to be
the stable one. Again, the measured phases lie on the stable
region, cos(2Css),0, shown as a solid curve.

The time dependence and stability of the system can be
formulated in a more general way. This may also allow an
easier treatment of other aspects of the system such as para-
metric feedback. We first review some of the properties of
nonlinear dynamics following closely the treatment pre-
sented by@12#. Specifically, we can examine the Liapunov
stability of a particular point in phase space, which is the
stability of the point under perturbations in the initial condi-
tions. Similarly, we can examine the structural stability of
the whole system, which is the stability of the topology of
the phase portrait under perturbations in the parameters of
the differential equations describing the system.

The system can be described, in general, byn differential
equations@in our case, Eqs.~5! and ~6!#,

ẋ15F1~x1 ,x2 , . . . ,xn!,

ẋ25F2~x1 ,x2 , . . . ,xn!,

A

ẋn5Fn~x1 ,x2 , . . . ,xn!, ~18!

whereF(x) is a vector field. Ifxs is an equilibrium point or
steady state solution~now including the zero amplitude so-
lution as well!, thenFi(x

s)50 for all i. We denote the steady
state solution by

xs5~x1
s ,x2

s , . . . ,xn
s!. ~19!

We can study the stability of this point under perturba-
tions in the initial conditions. Consider the small deviation
x→xs1j of the vector field equation,ẋ5F(x). Then the
time derivative of the deviation can be expanded as

j̇5F~xs1j!5F~xs!1Fx~xs!j1
1

2
Fxx~xs!j21•••

'Fx~xs!j, ~20!

whereFx is the Jacobian ofF. For the pointxs to be ~Li-
apunov! stable, we require that for every neighborhoodN of
xs in the phase space there exist a smaller neighborhood
N1,N of xs, such that every solution starting inN1 will
remain in N for all t.0. If all solutions tend toxs as t
→`, then xs is said to be asymptotically stable. It can be
shown that for asymptotic stability,j→0 ast→`, which is
equivalent to the condition that Rel i,0 for all eigenvalues
l i of K[Fx(x

s). Note thatK can be considered as a function
of system parameters.

For the one-electron parametric oscillator, the system is
described by the differential equations forȦ andĊ, given by
Eqs.~5! and~6!. The nonlinearity in the system is due to the

FIG. 13. Amplitude of the parametric response atvz1e as a
function of the time after the parametric drive at 2(vz1e) was
turned on att50, wheree/(2p)515 Hz. The solid line is a fit to
an exponential with time constantt532 ms.

FIG. 14. Stability regions for each of the two steady state
branches, as determined byt2 given in Eq.~17!. The ‘‘plus’’ pa-
rabola @corresponding to cos(Css) positive# must have a negative
slope to be stable@shown in ~a!#. The ‘‘minus’’ parabola@corre-
sponding to cos(Css) negative# must have a positive slope to be
stable@shown in~b!#. The oscillatory regions, delineated byx65

24e6A6
2 /(gz/2)2, are discussed in the text.
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anharmonicity, which causes the resonant frequency to de-
pend on the excitation amplitude. This restricts the growth of
the amplitude of the response, which then approaches a
steady state. We quantify the anharmonicity in a termJ de-
fined by

J5
3

8
l4vzA

21
5

16
l6vzA

4. ~21!

Using J, the Jacobian forAsÞ0 is

K5S 0 2Ase6

]J

]A U
s

2gz
D , ~22!

with the eigenvalues

l15~gz/2!S 212A16As
]J

]A U
s

2ue6u

~gz/2!2D 52t1
21 ,

~23!

l25~gz/2!S 211A16As
]J

]A U
s

2ue6u

~gz/2!2D 52t2
21 ,

~24!

where the sign under the radical depends on the sign of
cos(2Css) as before.~Here, Cs5Css defined earlier.! The
stable steady state solutions correspond to those having
Rel i,0 for both eigenvalues. Figure 15 shows~a! the ei-
genvalues and~b! the steady state solutions. The deviations
will approach or diverge from the steady state solution with
exponential rates given by the real parts of the eigenvalues.
The delineation pointsx6 , discussed earlier, correspond to
eigenvalues leaving the real axis and occur at (21,0) in Fig.
15~a!.

For the zero-amplitude solutionsAs50, the phase is not
defined. We can, however, take a small nonzeroA and then
take the limit asA→0. The Jacobian is then

K'~2gz/2!S 12S h

hT
D sin~2Cs! 0

0 2S h

hT
D sin~2Cs!

D ,

~25!

whereCs is the steady state phase for the small amplitudeA.
The eigenvalues are given directly by the diagonal elements.
Using Eq.~6!, we have, for sin(2Cs).0,

lA52gz/21Ae6
2 2e21~gz/2!2, ~26!

lC522Ae6
2 2e21~gz/2!2, ~27!

which for ueu,ue6u are not both,0. Note that Eq.~7! is not
applicable for thisAs50 case. TheAs50 solution is clearly
unstable insofar as the amplitude diverges with an exponen-
tial time constant (lA)215t @the same time constant given
in Eq. ~15!#. For sin(2Cs),0, we have

lA852gz/22Ae6
2 2e21~gz/2!2, ~28!

lC8512Ae6
2 2e21~gz/2!2. ~29!

ThelA8 eigenvalue would lead to a reduced amplitude; how-
ever, asj→0, F(xs) for our small nonzeroA can no longer
be neglected compared toFx(x

s)j in Eq. ~20!. Therefore,
lA8 andlC8 are not valid solutions.

Finally, we examine the effect of perturbations on the
structural stability of the system. We restrict our discussion
to the behavior of the family of equilibrium points, that is,
whether or not they remain stable or unstable under changes
of system parameters. This is useful in determining the effect
of small fluctuations or uncertainties on the robustness of an
excitation of the electron. For changes inh.hT andgz.0,
pairs of eigenvalues, given by Eqs.~23! and ~24!, move to-
ward the~0,0! or (22,0) points, never crossing the imagi-
nary axis. This is depicted in Fig. 15~a!. A stable~unstable!
pair of eigenvalues therefore remains stable~unstable!. Thus,
the system is structurally stable under changes in eitherh
.hT or gz.0. Variations in the system parametersl4 and
l6 also result in migration of the eigenvalues toward or away
from the~0,0! or (22,0) points. Eigenvalues far away do not
cross these points, and are structurally stable under small
variations inl4 or l6 . Eigenvalues near these points, on the
other hand, may be structurally unstable. The special points
~0,0! and (22,0) correspond to the vertices of the parabolas
given by Eq.~8! and shown in Fig. 15~b!. Any family of
eigenvalues of the parametric oscillator can be depicted by
Fig. 15~a!, except for pathological cases such asl650 or
both l4 ,l650. In this broader sense, the various systems
have topological equivalence and structural stability.

IV. CYCLOTRON MOTION COUPLED TO A CAVITY

The cyclotron oscillation frequencyvc8 is more than 2000
times higher than the axial frequencyvz . This motion can

FIG. 15. Steady state branches:~a! The eigenvalues of the asso-
ciated vector fieldK. When both eigenvalues have Rel,0, then
the corresponding steady state solution is stable. A similar graph
exists for each of the branches~‘‘plus’’ parabola and ‘‘minus’’
parabola!. ~b! The steady state solutions given by Eqs.~5! and ~6!.
The solid lines are stable, whereas the dashed lines are unstable.
Similar graphs exist for anharmonicities of the opposite sign.
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be excited with a very pure microwave drive@13# which
enters the trap through the small tube shown in Fig. 1. A
cyclotron excitation to energyEc results in a shift in the axial
frequency,

Dvz

vz
52

Ec

2mc2
, ~30!

and a shift in the cyclotron frequency,

Dvc8

vc8
52

Ec

mc2
. ~31!

Both of these shifts are due to special relativity and are often
thought of as relativistic mass shifts since special relativity
has the effect of replacing the massm in the mass-dependent
frequencies bygm, whereg is the familiar relativistic factor
~the total energy, rest mass energy plus kinetic energy, di-
vided by the rest energy!.

For the purposes of this paper, a cyclotron excitation sim-
ply causes the axial frequency to shift. The dip to the right in
Fig. 16 is the undriven axial resonance observed for no cy-
clotron excitation. A cyclotron excitation ofEc56.7 eV
causes the axial frequency to shift downward by 550 Hz~the
left dip in Fig. 16!. Turning off the cyclotron microwave
drive causes the electron resonance dip to shift back to its
original position as the cyclotron motion spontaneously
emits synchrotron radiation. This spontaneous emission is
modified by the presence of a surrounding microwave cavity
which can either enhance or inhibit spontaneous emission
@6,14,15#.

For the large cyclotron excitations used here, the time it
takes the axial resonance to come within a linewidth of its
Ec50 position is of order 100 ms. However, it takes several
minutes of signal averaging to observe the dip in the noise
resonance; it is not possible to time resolve the shifting dip.
One could apply a drive directly atvz for Ec50 and mea-
sure how long it takes to see the drive response illustrated in
Fig. 3. Instead, we apply a parametric drive atvd52vz and
take advantage of the large signal which is rapidly produced
by a parametric excitation. At timet50 the microwave drive
is turned off and the cyclotron energy begins to damp. Spe-

cial relativity shifts the axial resonance upward, eventually
into parametric resonance with the drive. After a delay, a
parametric response thus begins~much like those in Fig. 12!.
The response grows with a time constant that is due to a filter
included to improve the signal-to-noise ratio. When this filter
is removed we can observe rise times less than 10 ms but the
signal-to-noise ratio is such that averaging over hours then
becomes necessary. Figure 17 shows four measurements
made of the time delay before a response is observed, for
different values of the initial cyclotron excitation. Each point
is an average of ten trials. The fitted line~constrained to pass
through the origin! gives an exponential damping time for
the cyclotron motion of 4364 ms. In free space, this cyclo-
tron radiation lifetime would be 99 ms, and so the spontane-
ous emission is clearly enhanced by the coupling between
the cyclotron motion and the trap cavity. In the past, only the
longer damping time for inhibited spontaneous emission
could be observed@6#.

During these measurements we also observed the interest-
ing behavior of two electrons whose cyclotron motions are
excited. As a context, Fig. 18~light line! shows the axial
frequency of one electron as a cyclotron drive is swept
downward ~large shift! and upward ~small excitation!
through resonance. As in earlier observations@13#, the fre-
quency of a driven and locked axial resonance is observed
continuously. The characteristic, triangular resonant shape of
the anharmonic oscillator is evident and this anharmonicity

FIG. 16. Axial resonance of a single trapped electron~noise-
shorting dip to the right! is shifted to a lower frequency~left! when
the electron’s cyclotron motion is excited to an energy ofEc

56.7 eV. When the cyclotron drive is turned off, the dip shifts
back as the electron damps via its coupling to the radiation field in
the trap cavity.

FIG. 17. Time between turning off the cyclotron drive and the
first observation of a parametric axial response, as a function of the
energy of the initial cyclotron excitation. The~solid! fitted line
~constrained to pass through the origin! shows an exponential
damping time for the cyclotron motion which is shorter than the
spontaneous emission time in free space~dashed line!. Spontaneous
emission is enhanced by the coupling of the electron cyclotron mo-
tion and the cavity.

FIG. 18. Anharmonic cyclotron resonance for one~light line!
and for two~bold line! electrons.
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is due to special relativity as stated in Eqs.~30! and ~31!.
Sweeping the cyclotron drive downward through resonance
when two electrons are present in the trap exhibits a slightly
more complicated resonance structure shown in Fig. 18~bold
line!. Initially the slope is the same for two electrons as for
one. This occurs because the center-of-mass motion is ob-
served and the center of mass of two electrons has the same
charge-to-mass ratio as does one electron. The cyclotron ex-
citation energy drops suddenly but not to zero, presumably
because one electron remains excited while the second
damps to the center of the trap. The excitation of the excited
electron continues and increases as the drive is swept down-
ward in frequency until eventually this excitation also drops
out. The measured ratio of the two slopes is 1.960.2. Re-
lated couplings of two antiprotons in cyclotron orbits with
frequencies shifted by special relativity have been observed
@16#, as have similar couplings between a simultaneously
trapped antiproton and H2 ion.

The basic features of the two electron resonance can be
explained by a simple model of two oscillators coupled by a
force F. The equations of motion are

m1z̈152kz11F212gz~ ż11 ż2!, ~32!

m2z̈252kz21F122gz~ ż11 ż2!, ~33!

wherez1 ,z2 are the displacements from equilibrium, andF21
is the force of particle 2 on particle 1. We add and subtract
the equations to get the behavior of the normal mode mo-
tions, a center-of-mass motion, and a breathing motion. The
center of charge rather than the center of mass is actually
detected. However, sinceg5A12(v/c)2'1, these are
about the same. Then we have

S z1

z2
D 5

1

2S z11z2

z12z2
D . ~34!

We takez̈1' z̈2' z̈1 , motivated by a rigid body approxima-
tion. The equation of motion for the center-of-charge mode
is, then,

~m11m2!

2
z̈152kz122gzż1 . ~35!

Thus, the signal due to the center of charge is the familiar
Lorentzian at a frequency

vz,15AkY ~m11m2!

2
. ~36!

Consider the case where the cyclotron motions of both elec-
trons are excited. Thenm15m25gm, and

vz,15Ak/gm. ~37!

The variation in the axial frequency with respect tog is
Dvz,1 /vz,152 1

2 Dg/g. The variation of the cyclotron fre-
quency, isDvc8/vc852Dg/g. This gives

Dvz,1

vz,1
5

1

2

Dvc8

vc8
, ~38!

which has the same slope as for one particle. If, on the other
hand, one electron is deexcited and the other is excited,m1
5m andm25gm. Then, the frequency of oscillation is

vz,15AkY ~11g!m

2
. ~39!

The variation in the axial frequency with respect tog is
Dvz,1 /vz,152 1

4 @2g/(11g)#Dg/g. The variation of the
cyclotron frequency remainsDvc8/vc852Dg/g. This gives
~sinceg'1)

Dvz,1

vz,1
5

1

4

Dvc8

vc8
, ~40!

which is one-half that for one particle. In this model, it is
clear that when the system drops from the first branch to the
second branch, the axial shift will be divided by 2. This can
be seen in Fig. 18. We check that our initial assumptionz̈1

' z̈2' z̈1 is valid by recognizing that on the second branch
the axial driving force will be halfway between the two natu-
ral frequencies.

V. MEASURING THE CYCLOTRON FREQUENCY
‘‘IN THE DARK’’

The measured enhanced spontaneous emission rate re-
ported in the previous section was done ‘‘in the dark’’ inso-
far as the cyclotron decay occurred in the absence of any
drive able to make an appreciable increase in the electron’s
excitation amplitude. However, the field-effect transistor
~FET! amplifier which detected the voltage induced across
the resistor was left on continuously and energy dissipated in
this FET caused the effective temperature of the resistorR to
be greater than the ambient 4.2 K. We now consider a cy-
clotron frequency measurement which is more ‘‘in the dark’’
insofar as the FET detection amplifier is turned off during
the crucial part of the measurement, allowing the resistor
temperature to decrease to the ambient 4.2 K. The parametric
axial oscillator is used as a 1-bit memory to record whether
or not a cyclotron excitation occurred. Since special relativ-
ity produces a shift in the electron’s axial frequency when
the cyclotron motion is excited, we need only detect a shift
in the axial frequency. A parametric drive is turned on at a
frequency corresponding to pointA in Fig. 10. The axial
motion of the electron is not excited. A downward, relativ-
istic shift in the electron’s axial frequency is equivalent to
shifting the frequency of the parametric drive upward to
point C in the figure. The electron’s axial motion remains
unexcited during the initial~and critical! cyclotron excita-
tion, until the electron enters the single valued region at ar-
row B enroute to pointC. Even when the axial frequency
shifts back because the cyclotron drive is turned off, the
parametric hysteresis makes the axial excitation persist as
indicated by pointD in the figure. The FET detector is sub-
sequently turned on to read out the 1-bit memory, to find out
whether an axial frequency shift~and hence a cyclotron ex-
citation! took place.

The energy levels for the lowest cyclotron eigenstates
~number states! are shown in Fig. 19~a!. Since no spin is
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flipped, we focus on one of the two ‘‘ladders’’ of Landau
levels. Because of special relativity, the cyclotron energy
levels are not equally spaced. Instead, the transition fre-

quency between successively higher pairs of energy levels is
lower by

d5
\~vc8!2

mc2
, ~41!

whered/vc851029. To make a cyclotron excitation, a cyclo-
tron drive frequency is swept upward to a turning point and
then back downward@13,17#, as illustrated in Fig. 19~b!. If
the turning point is higher in frequency than the unshifted
cyclotron frequency@C andD in Fig. 19~b!#, a large excita-
tion is expected~like that directly detected with the FET
turned on, in Fig. 18!. If the turning point is less than the
unshifted cyclotron frequency~and there is no power broad-
ening!, then no excitation is expected@A and B in Fig.
19~b!#. Figure 20 shows the probability of observing a large
excitation as a function of turning point frequencies which
are separated from each other by 1 part in 109 ~1 ppb!. Each
point is the average of ten trials. It took 2 h to produce this
curve owing largely to the time required to turn on and off
the heavily filtered voltage supply for the FET. The observed
edge is very clean and has a resolution width less than 1 ppb.
This is gratifying insofar as 1 ppb corresponds to the relativ-
istic frequency shift due to a single quantum excitation of the
cyclotron oscillator. We have thus succeeded in resolving a
one quantum excitation of the cyclotron motion using special
relativity, without resorting to any magnetic field inhomoge-
neities which couple the various electron motions and se-
verely broaden the resonance lineshapes@7,18#. This resolu-
tion also indicates that the magnetic field produced by a self-
shielding, superconducting solenoid@19,20# drifted less than
1 ppb during this particular 2-h measurement.

For a completely ‘‘in the dark’’ experiment, the axial mo-
tion must also be decoupled from the thermal noise from the
detection resistor. This is easily accomplished by detuning
the trap potential to make the axial frequency no longer reso-
nant with theLCR circuit shown in Fig. 2. However, the
axial excitation will remain at the average energy corre-
sponding to 4.2 K insofar as such detuning also eliminates
the axial damping. To cool the axial motion below 4.2 K, it
should be possible to employ cavity sideband cooling@21#.
At the 4.2 K ambient temperature of our current traps, the
cooling limit for the axial motion would be 2 mK. Electrons
recently confined at 50 mK@22# could, however, be cooled
to mK axial temperatures.

FIG. 19. ~a! Energy eigenstates~number states! for the relativ-
istic electron cyclotron oscillator, with cyclotron quantum numbern
and spin quantum numberms . ~b! Representation of the change in
the frequency of the drive applied to excite the cyclotron motion of
an electron~above! in comparison to the resonant frequencies~be-
low!. For a cyclotron motion initially in its ground state, sweeping
the drive to the ‘‘turning points’’A or B ideally produces no exci-
tation, whereas sweeping to the turning pointsC or D allows a large
excitation.

FIG. 20. Probability for ‘‘pulled’’ relativistic excitation of the
cyclotron motion of one electron as a function of the turning point
frequency from which the cyclotron drive is swept to lower fre-
quencies.
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VI. CONCLUSION

We look forward to repeating these studies in a cylindri-
cal Penning trap@23#, where the radiation modes are now
well measured and understood@10,11,24#. The ‘‘in the dark’’
techniques demonstrated here, together with the desirable
properties of the cylindrical Penning trap, suggest the likeli-
hood of a new generation of measurements of the electron’s
magnetic moment with higher accuracy and smaller system-
atic error. The increased understanding of the time depen-
dence and stability of parametric excitations should permit
the faster cyclotron frequency detection necessary for an im-
proved magnetic moment measurement@25#. This under-
standing may also permit investigations of self-excitation us-
ing parametric feedback, as well asin situ electron

temperature measurements. Observing a clean parametric
resonance with a single electron also demonstrates the sen-
sitivity required to study the nonlinear dynamics of two,
three, four, and more interacting electrons. An initial study
of the collective plasma behavior of many trapped electrons
has been carried out@10,11#, and now it should be possible to
study the onset of collective motions as the particle number
is increased from unity.
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