Appendix B

Linear Coupled Oscillators with
Thermal Noise

Trapped electrons are coupled to a tuned circuit for detection and eventually
come into equilibrium with it. The trap electrodes and tuned circuit are in ther-
mal contact with a LHe bath. Thermal motions are observable even near 4 K. For
example, the precision of the measured magnetic moment of the electron using
a magnetic“bottle” [83] may ultimately be limited by the substantial linewidth
broadening caused by the thermal axial motion of an electron in the magnetic
field gradient, unless a variable bottle [86] can be used. The thermal motion of
an electron oscillator has been thoroughly analyzed [7,10]. In this section, we de-
scribe the Johnson noise in the tuned circuit and a square-law detection technique
[18,93] used in observing thermal agitations. Some interesting and useful features
arising from the interaction between the tuned circuit and trapped electrons are
discussed. A simplified explanation is provided for heat transfer in an electron/ion
cloud which are sufficiently gradual (quasi-static). Finally, the basic features of
a “bolometric” model [18,93] of disordered motions in trapped electrons/ions are
summarized.
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Figure B.1: Harmonic oscillators: (a) series LCr network, (b) damped, ideal
spring-mass system, (c) parallel LCR network .

B.1 Detection Circuit: Harmonic Oscillator

The simplest representation of the detection circuit is a series LCr network
(represented in Fig. B.la, where L is the inductance of the helical resonator, C

is the trap capacitance, and r represents radio frequency losses in the circuit).

183



This network is exactly analogous to a damped, harmonic oscillator illustrated in
Fig. B.1b consisting of a mass attached to an ideal, massless spring surrounded
by a viscous medium. The observed signal is derived from the voltage across the
inductor Vi, = LI(t) where I(t) = Q(¢) is the current through the inductor. Since
thermal agitations produce (Vi(2)) = 0, only the mean squared value is measured.
( The symbol (...} denotes ensemble average.) The mean squared fluctuation in
a small frequency bandwidth Aw can be measured using a square-law detection
technique (Fig. 2.15). The theory of square-law detection is briefly discussed in
this section.

The voltage across the inductor is amplified, filtered and squared to produce
a signal proportional to mean noise power. The signal is obtained by the sum of
Fourier amplitudes in the bandpass [w — Aw/2,w + Aw/2]of the filter

sw=[ t: HF($)V() (B.1)

where the function F(¢) which restricts the observation bandwidth,Aw, is given

by [10] a2
F(t)=2 j Socosl(wr +w')t — 4] (B2)

The phase ¢ is ad_;usted by a phase-shﬂ:er Observed output of squarer is propor-
tional to

= [ [T awFeF@V@G) - (83

The correlation function for Vi(2) is related to the impedance Z(w) of the network
by [90]

Vi(Valt)) = 2kaTr [ 2Ly [priwg-i—w) o) . (Ba)
For a series LCr network (e.g., Fig. B.1a), the circuit impedance is given by
Z(w) =r 4+ iwL + 1/(iwC). | (B.5)

Hence, in the limit of narrow observation bandwidth Aw < r/L, we get the
familiar result for Johnson noise

(S =4 [ ) (B6)
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where the effective resistance R(w) is given by

(3Tm)"
(war —w)? + (3Tw)”

Rw) = [ 2] (B7)
The subscript 0 in (S5?) indicates that there are no trapped particles. Observed
noise power is maximum when the bandpass filter is centered at the resonance
frequency was of the tuned circuit. A “noise resonance” is obtained by sweeping
the bandpass center frequency, producing a Lorentzian lineshape with resonant
frequency wy = 1/\/L_Ca.nd a full width at half-maximum of I'ys = r/L. Observed
noise-driven resonance for our apparatus is shown in Fig, B.2a, when the trap is

empty.

A helical resonator has often been represented by a parallel LCR network
shown in Fig.(B.1c) in earlier works [93]. In practice, because the quality factor is
fairly high (Q > 600), the difference between these two representations is negligible
(of order 1/Q) provided the resistances r and R are related by

L
=7 - (B.8)
While the parallel LCR representation is very convenient when w? ~ 1/(LC), the
series LCr circuit more readily provides a detailed study in general, particularly

when the circuit is coupled to trapped particles.

B.2 Coupled oscillators

" An electron bound in the trap interacts with the tuned circuit. For a pure elec-
trostatic quadrupole potential, the axial motion of an electron is repreaented by a
spring oscillator. Fig. B.3 illustrates the coupling of the tuned circuit toa trapped
electron. In general, the electron may be surrounded by a fluid medium consisting
of background gas (e.g., in a poor vacuum) or consisting of simultaneously trapped

ions,
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The coupling between an electron and the tuned circuit is described by the

interaction potential
AP i &
Vi = | 221 2Q (B9)
where Z(t) is the displacement from the trap center along the symmetry axis and
Q(t) is the charge accumulated in the capacitor. The dimensionless geometric
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Figure B.2: Observed “noise resonance” of the tuned circuit obtained by sweeping
the center frequency of bandpass filter (a) when the trap is empty and (b) when
the trap has a small electron cloud with the same resonant frequency.
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Figure B.3: Simplified representation of a tuned circuit coupled to an charged
particle oscillating in a background gas.

factor % is equal to 1 for an infinite parallel plate capacitor. Thus, the Langevin

equations for the coupled oscillators are

L[£2+TM;+%] oW + |72 26) = v,

m [g; tragted 20+ [ o = Fo. @)

which appear similar to Eq. (2.39) and Eq.(2.40) except that the “Langevin forces”
on the right hand side (and hence Z(%) and Q(t) as well} are stochastic processes.
These random forces have Gaussian distributions with (F(t)) = (V(¢)}) = 0 and
are characterized by the correlation functions:

(VIOOF(t)) = 0o,

(FOF()) = 2kgTo(mye)é(t —t'),

167



(VI)VE)) = 2ksT.(LTr)é(t — ¥). (B.11)

They are uncorrelated, “white” noise sourcés. In this section, we examine the
characteristic features of the observed signal when the system of coupled oscillators
is driven by white noise.

Consider first the case of an electron harmonically bound in an ultra-high
vacuum envelope held at temperature T. In this case, collisions with background
gas is completely negligible, so that 4., = 0. The output of the squarer given by
Eq.(B.6) must be modified to read

(w2 —w?)’
(@2 — w?) + ()
where the &, is the shifted resonant frequency of the electron oscillator and «,
is its damping rate due to coupling with the circuit , given by Eq.(2.49). The
damping and frequency shift caused by the tuned circuit are discussed in Sec. 4,
where they are shown to depend in a simple way on the detuning from the tuned
circuit.

Features due to this coupling are more easily observed with many electrons
since the center-of-mass (CM) motion is also coupled to the tuned circuit in the

{S¥) = {53) (B.12)

same way. The description given above remains valid for N electrons suspended
near the trap center, provided § —+ N¢ , m — Nm, and Z(t) becomes the CM
coordinate. Illustrative cases calculated from Eq.(B.12) are shown in Fig. B.4.

If the resonant frequencies of the spring oscillator and LCr circuit are tuned to
the same value w, = wy, a “dip” appears at the center of the signal. An example
of observed dip in the noise resonance of the tuned circuit due to trapped electrons
is shown in Fig. B.2b. For small number of electrons, N, < T'a, the signal in a
small frequency range about w. simplifies to read

_ Aw (To/2)?
(S%) = 4ksTR (27) [1- o IR (B.13)

Thus, the electrons produce an inverted Lorentzian with linewidth T, = I',(0) =
Nvz (i.e., N times wider than the maximum linewidth of one electron). The signal

168



is “shorted out” at the resonant frequency as shown in Fig.(B.4b). For large N,

the signal maxima {S% )mas Occur at frequencies

=wy —\/ T, , (B.14)

which are separated by the geometric mean of the widths T, and Ty, as can be
easily shown by demanding the derivative of Eq.(B.12) with respect to w to be
equal to zero. Thus, I', = (w* —w™)?)/T'x can be used to determine N for large
systems.

In general, the observed signal is “shorted out” at the unperturbed resonant
frequency of the particle oscillator w, even when w, # was. This feature could be
useful for high precision mass spectroscopy which compares ions of nearly the same
mass (such as protons and antiprotons) without being limited by shifts caused by
the detection circuit. It should be noted that the sharp peak near the w. has its
maximum slightly farther away from the tuned circuit resonant frequency than &,
. In the narrowband limit, this maximum occurs at

r
Wmas = By + L2 [ /2 ] (B.15)
2 Wy — Was
The order in the frequencies is given by
wyM <w, <&, <wt for w,>wy ,
WO, <w, <wy for wy>w, , _ (B.16)

as illustrated in Fig. B.4c.

B.3 Electron Cooling of Trapped Antiprotons

Fig. B.3 provides a simple model for the process of cooling antiprotons cap-
tured in a Penning trap using simultaneously trapped electrons sharing the same
trapping volume. [35] Consider one electron trapped together with a hot cloud:
of anti-protons. If spontaneous emission is completély suppressed, then the elec-
tron couples only to the LCr circuit connected to the trap electrodes. Without
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the tuned circuit, the electron comes into equilibrium with the antiproton gas at
temperature T; and undergoes brownian motion. When the tuned circuit is con-
nected to the electrodes, the electron couples and transfers energy to the tuned
circuit which dissipates the energy in the resistor. This process gradually cools

the antiproton gas surrounding the electron.
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Figure B.4: Calculated noise power from tuned circuit coupled to (a) no electron,
(b) small electron cloud at w, = wyy, and (c) small electron cloud at w, > wys

170



The rate of cooling is equal to the power dissipated in the resistor. If the

process is quasi-static, then we can write

CesTe = —(QP), (B.17)

where Cg is the heat capacity of the gas. Joule heating (right hand side) can
be calculated from the fluctuating current in the tuned circuit induced by the
Brownian motion of the electron oscillator (which is driven by the heat bath of
antiprotons). This has a simple form when v + 4. < Ty ¢

QP = (220 ko (B.18)
where <, is the decay rate of electron oscillation due to the tune& circuit. At
sufficiently high temperature, the heat capacity Cg is independent of temperature.
Hence, the temperature of the antiprotons gas drop exponentially with a damping

constant 7 given by

1 ks Yeol V= ) |
iy g L N L 2 B B.19
T Cg (‘rm: + %2 (B.19)

Typically,the damping rate v, of an electron by a tuned circuit is sufficiently
fast near resonance, and hence the cooling rate of the antiprotons is essentially
determined by the collision constant 7,4 and the heat capacity. That is, for
Tm 2 92 > “eal, the cooling rate is 77! = v.4(kp/Cg). H now we sweep the cy-
clotron frequency into resonance with a cavity mode, then a factor of 2 in cooling
rate is gained from synchrotron radiation provided energy transfer to the electron
cyclotron motion has the same time constant. On the other hand, unavoidable
anharmonicity in real Penning traps makes large axial motions very anharmonic.
This would cause the electron oscillator to be greatly detuned from the cold, LCr
circuit 5o that v, € 4.1, thus making the cooling process much less efficient. Since
the heat capacity is proportional to the number of gas particles, a large number
of electrons is necessary to get useful cooling rates.

This description of electron cooling of trapped antiprotons , although qualita-
tively useful, is oversimplified in some important aspects. For example, the equili-
bration time constant between electrons and anti-protons is a function of tempera-
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ture and density. Furthermore, the heat capacity of a cloud of harmonically-bound
antiprotons is different from that of a gas. Careful consideration of such issues is

given in Ref. [72].

B.4 Bolometric model

In addition to the coupling between CM motion and tuned circuit, an electron
cloud has many internal degrees of freedom which can be heated separately with
an RF or microwave drive. The electron cloud gyrates in the strong magnetic field
of the Penning trap and thus can radiate via cavity modes which couple to the
cyclotron motion, just as the axial CM motion is damped by the tuned circuit. A
full description of the dynamics is difficult. The problem is significantly simplified
if the disordered, internal motions of a given type (e.g., axial oscillations) form a
thermal reservoir characterized by a temperature. A “bolometric” model [18,93]
of trapped electrons/ions has been developed which essentially focuses on the
temperatures of such reservoirs. To illustrate the main features of the bolometric
model, we first consider a simple example, which can be generalized.

The simplified system is made up of only the axial motions of the electrons
(B — oo limit). For a pure electrostatic quadrupole potential, the axial CM motion
is completely decoupled from the thermal reservoir formed by the internal motions.
In practice, however, deviations from the pure electrostatic quadrupole couple the
CM motion to the internal reservoir. Fig. B.3 can be used for illustration if the
“gas” now represents the internal (axial) degrees of freedom of the electron cloud.
The tuned circuit is assumed to be held at a temperature T,, and an amount of
power H flowing through the container heats or cools this “gas”,

Under quasi-static conditions, energy conservation requires that
d . . . '
CGE—{TG = H + (M7 ){Z?) — (Q()*)r. (B.20)

where we have added two more terms to Eq.(B.17) . The term (m+.){Z?) accounts
for the heat dissipated in the gas by the axial oscillation Z(t), which is driven by
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the Johnson noise in the tuned circuit. Joule heating in the tuned circuit is given
by (Q?)r. The term H is due to heat exchange between the gas and the external
world. Mean squared terms on the right hand side can be calculated to give

d .
CGETG = g(T, - TG) + H. (B.21)

The thermal conductivity between the internal reservoir and the resistor r via the
brownian motions of the coupled oscillators is given by

dw |w|?
— 2 — —
g = 2k5YouTo( Carwnr) f - | = (B.22)
where
A = (wiy — w? = iTyw)(w? — w? ~ iyw) = Pyl T, . (B.23)

This integral has a simple limit if Tas 2> Yt +T'; , yielding g = kpYeotl's /(Yeot +T's)
with I'; being the damping rate of the CM motion due to the tuned circuit. This
is one of the simplest case of the bolometric model.

We summarize here the basic features of the bolometric model, represented
electro-mechanically in Fig.(B.5). Two internal reservairs are used to accouxt for
both axial and cyclotron motions. For parallel motions, a tuned circuit is coupled
to the axial CM motion , which in turn interacts with the gas representing the
internal axial motions of the electron cloud. For transverse motions, a cavity mode
(represented by an LCr circuit}) is coupled to the cyclotron CM motion, which in
turn interacts with another reservoir representing the cyclotron internal motions
. Heat exchange between the internal reservoirs occurs via electron-electron colli-
sions. External sources can raise the temperatures of these motions independently.

Assuming that equilibration time between the internal reservoirs is shorter than
other relaxation times, further simplification is obtained by combining all internal
motions into one reservoir at temperature 7;. The two temperatures of interest
are those of the axial CM motion T, and the temperature of the combined internal
reservoir T;. Energy conservation gives a system of first-order ordinary differential
equations [18,93]

d

Cg aTz = grz(ﬂ - Tz) + gu(:n - Tz) + Ez,
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Figure B.5: The bolometric model

d -
Cx T = 9mi(Tu—T)+9a(T: - T) + H;, (B.24)

where T, and T are the temperatures of the detection circuit and cavity, respec-
tively. (Typically, T, = Ty.) The terms H, and H; denote energy flowing into
the axial CM motion and internal reservoir, respectively. The heat capacities C,
and C; are those for harmonic oscillators (kg per oscillator). The thermal con-
ductivities g;; are determined experimentally. This set of rate equations has been
thoroughly investigated with trapped electrons cooled to ~ 80K, for which the
equilibration time between internal reservoirs is observed to be very fast. [93] The
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equilibration rate, however, can decrease dramatically at much lower temperatures
[68] and a more general set of rate equations may be necessary. Finally, the bolo-
metric model is useful only if the system is not driven so strongly that collective

behaviors emerge.
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